Covering symmetric supermodular functions by uniform hypergraphs

نویسنده

  • Tamás Király
چکیده

We consider the problem of finding a uniform hypergraph that satisfies cut demands defined by a symmetric crossing supermodular set function. We give min-max formulas for both the degree specified and the minimum cardinality problem. These results include as a special case a formula on the minimum number of r-hyperedges whose addition to an initial hypergraph will make it k-edge-connected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering symmetric supermodular functions by graphs

The minimum number of edges of an undirected graph covering a symmetric , supermodular set-function is determined. As a special case, we derive an extension of a theorem of J. Bang-Jensen and B. Jackson on hypergraph connectivity augmentation. 0. INTRODUCTION T. Watanabe and A. Nakamura 1987] proved a min-max formula for the minimum number of new edges whose addition to a given undirected graph...

متن کامل

Covering symmetric semi-monotone functions

We define a new set of functions called semi-monotone, a subclass of skew-supermodular functions. We show that the problem of augmenting a given graph to cover a symmetric semi-monotone function is NP-complete if all the values of the function are in {0, 1} and we provide a minimax theorem if all the values of the function are different from 1. Our problem is equivalent to the node to area augm...

متن کامل

Mixed Covering Arrays on 3-Uniform Hypergraphs

Covering arrays are combinatorial objects that have been successfully applied in the design of test suites for testing systems such as software, circuits and networks, where failures can be caused by the interaction between their parameters. In this paper, we perform a new generalization of covering arrays called covering arrays on 3-uniform hypergraphs. Let n, k be positive integers with k ≥ 3...

متن کامل

Edge-connectivity of undirected and directed hypergraphs

The objective of the thesis is to discuss edge-connectivity and related connectivity conceptsin the context of undirected and directed hypergraphs. In particular, we focus on k-edge-connectivity and (k, l)-partition-connectivity of hypergraphs, and (k, l)-edge-connectivityof directed hypergraphs. A strong emphasis is placed on the role of submodularity in thestructural aspects o...

متن کامل

The Supermodular Stochastic Ordering

In many economic applications involving comparisons of multivariate distributions, supermodularity of an objective function is a natural property for capturing a preference for greater interdependence. One multivariate distribution dominates another according to the supermodular stochastic ordering if it yields a higher expectation than the other for all supermodular objective functions. We pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2004